Learning Sentences and Assessments in Probabilistic Description Logics
نویسندگان
چکیده
The representation of uncertainty in the semantic web can be eased by the use of learning techniques. To completely induce a probabilistic ontology (that is, an ontology encoded through a probabilistic description logic) from data, two basic tasks must be solved: (1) learning concept definitions and (2) learning probabilistic inclusions. In this paper we propose and test an algorithm that learns concept definitions using an inductive logic programming approach and then learns probabilistic inclusions using relational data.
منابع مشابه
Learning Probabilistic Ontologies with Distributed Parameter Learning
We consider the problem of learning both the structure and the parameters of Probabilistic Description Logics under DISPONTE. DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”) adapts the distribution semantics for Probabilistic Logic Programming to Description Logics. The system LEAP for “LEArning Probabilistic description logics” learns both the structure and the parameters of D...
متن کاملIndependence Relations in Probabilistic Logic (Extended Abstract)
In “standard” probability theory, one lists all events that are logically possible, and then places a normalized measure over them. This scheme is rather dry. It may happen that the list of possible events is encoded through logical sentences, and one must employ logical reasoning to determine which events are included in probabilistic assessments. It may also happen that probabilistic assessme...
متن کاملAssembling a consistent set of sentences in relational probabilistic logic with stochastic independence
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inf...
متن کاملAn Algorithm for Learning with Probabilistic Description Logics
Probabilistic Description Logics are the basis of ontologies in the Semantic Web. Knowledge representation and reasoning for these logics have been extensively explored in the last years; less attention has been paid to techniques that learn ontologies from data. In this paper we report on algorithms that learn probabilistic concepts and roles. We present an initial effort towards semi-automate...
متن کاملLearning Probabilistic Description Logics: A Framework and Algorithms
Description logics have become a prominent paradigm in knowledge representation (particularly for the Semantic Web), but they typically do not include explicit representation of uncertainty. In this paper, we propose a framework for automatically learning a Probabilistic Description Logic from data. We argue that one must learn both concept definitions and probabilistic assignments. We also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010